Rare and Exotic Processes at CDF

Search for Anomalous $\gamma\gamma+X$ Search for Anomalous $\gamma b E_T$ Search for Fermiophobic Higgs

Ray Culbertson, FNAL, for the CDF Collaboration

Signature-Based Searches

First two of three results shown here are SBS

The Idea

- ♦ Chose a signature
- ♦ Define a nominal selection, with variations
- **♦** Compute SM backgrounds
- ♦ Report event yields and kinematics
- ♦ Investigate discrepancies

The Why

- ◆ There are many models, very few are obviously more likely than others
- ♦ Model limits usually do not provide critical insight
- ♦ Save time cover more signatures
- ♦ Experimental results are experimental

Search for Anomalous γγ+X

Search for Anomalous γγe/μ

Event Selection

- ♦ 1 fb⁻¹
- ♦ Two photons $E_T>13$ GeV, $|\eta|<1.1$
- **♦** Electron
 - central or forward
 - $-E_T>20GeV$
- ♦ Muon
 - $|\eta| < 1.0$
 - $-P_T>20 \text{ GeV}$

Backgrounds

- ♦ W/Zγγ: MadGraph+Pythia, k-factor
- \blacklozenge W/Z γ , with electron faking photon
- ♦ Fake leptons and jets faking photons (small)

γγe/μ Kinematics

Before applying Phoenix rejection		
Source	electron	muon
$Z\gamma\gamma$	$0.904 \pm 0.023 \pm 0.083$	$0.552 \pm 0.017 \pm 0.050$
$W\gamma\gamma$	$0.170 \pm 0.012 \pm 0.016$	$0.086 \pm 0.008 \pm 0.008$
	$0.131 \pm 0.004 \pm 0.053$	
$l\gamma + \text{jet} \rightarrow \gamma$	$0.475 \pm 0.025 \pm 0.312$	$0.133 \pm 0.013 \pm 0.090$
$l\gamma + e \rightarrow \gamma$	$5.140 \pm 0.340 \pm 0.584$	$0.017 \pm 0.017 \pm 0.002$
Total	6.82 ± 0.75	0.79 ± 0.11
Data	3	0

SUSY 2009

5

Ray Culbertson

Search for Anomalous γγτ

Event Selection

- ♦ 2 fb⁻¹
- ♦ Two photons $E_T>13$ GeV, $|\eta|<1.1$
- ♦ Hadronic τ
 - narrow calorimeter cluster
 - $-E_T > 15 \text{ GeV}$
 - 1 or 3 tracks
 - isolation cone

Backgrounds

- ♦ W/Zγ, W/Zγγ: MadGraph+Pythia, k-factor
- ♦ Fake τ's
 - define a loose tau, and measure fake rate: loose \rightarrow tight

γγτ Kinematics

Results for yyt

fake τ 44±10 W/Z+ τ 2.2±1.0 Total 46±10 Obs 40

Search for Diphoton and MET

Data Sample

- ♦ 2 fb⁻¹
- ♦ Two photons, |η|<1.1, E_T>13GeV Backgrounds
- ♦ Non-collision→topology, EM timing
- ♦ Wγ, electron faking photon →MC, normalized to data
- ◆ QCD with fake MET→MET Model of jet resolution

MET Model: use the topology of each event to estimate the MET it could produce due to energy resolution, and therefore how significant the observed MET is

Search for Diphoton and MET

	MetSig >3	MetSig>5
bkg	67.9 ± 7.5	27.3 ± 2.3
data	82	23

Wγ MetSig selection efficiency: 84% 67%

GMSB Limits

Re-optimize H_{T}

MetSig

B. C. Allanach et al, Eur. Phys. J C25 113 (2002)

E. Blatz et al., J. High Energy Phys. 0305, 067 (2003)

See also talk by Anwar Bhatti

CDF Run II Preliminary

Search for Anomalous $\gamma b E_T$

Introduction

- ♦ Signature-based
- ♦ Real γbMET is rare, < 3% of sample
- ◆ Most from mismeasured E_T
- ♦ Several models exist

Data Sample

<u>Dataset</u>

- ♦ 2 fb⁻¹ of data
- ♦ Trigger: inclusive photon

Base Event Selection

- $\phi \gamma E_T > 25 \text{ GeV}, |\eta| < 1.1$
- 1 jet with corr $E_T > 15 \text{ GeV}$
- jet is tagged by a secondary vertex

Final Event Selection

- ♦ second jet
- ♦ $\Delta \phi$ (jet-MET) > 0.3
- $\Delta R > 0.4$ for all combinations of photons and jets
- ♦ MET > 25 GeV

Backgrounds

- 1) Fake photons
- 2) Real photon, fake b-tag
- 3) Real photon, real b
- 4) Real photon, real charm

Background 1,2

Method

• Exploit two photons in a π^0

CES

- \bullet E_T<35 GeV
- ♦ CES=Shower-Max
- ♦ Shower shape in shower max detector

CPR

- \bullet E_T>35 GeV
- ♦ CPR=central pre-radiator
- ♦ Conversion rate in CPR

- \blacklozenge BG 1 (fake γ) apply reverse CES/CPR method to final selection
- ♦ BG 2 (real γ, fake b) apply CES/CPR and a jet mis-b-tag probability, to the sample before b-tagging

Heavy Flavor Fit

HF MC Sample

- ♦ γb γc
- ♦ MadGraph+Pythia
- **♦** CKKW matching

HF fractions

- ♦ Fit secondary vertex mass
- b,c from MadGraph
- ucd from Pythia

Background 3,4 – γb,γc

Normalization for yb

- \blacklozenge In base γ b sample, find b fraction
- ◆ Includes real and fake photons –
 which have different b fractions
- ♦ Adjust b fraction based on b fractions in fake photon sample, weighted by CES/CPR result
- ♦ Apply MC efficiency for signal region cuts: E_T , $\Delta \phi$, 2nd jet (0.0123±0.0025)

Normalization for γc

- ◆ Do not have a reliable enough MC efficiency to apply the b method to c
 - ♦ Simply run the fit in the signal region (therefore insensitive to a charm signal)

Results for γbjMET

fake γ	$115\pm49\pm54$
γ, fake b	$141\pm 6\pm 30$
γb	341±18±91
γc	9±52±14
Total	607±74±86
Obs	617

Kinematics

17

Search for Fermiophobic Higgs

Fermiophobic Higgs

- ♦ Available in many SM extensions with 2 Higgs doublets
- ♦ Mild fine tuning can turn off fermion couplings, boson couplings unaffected
- ♦ Cross section relative to SM ×0.5, BR ×100

1)Gluon Fusion 2)Associated Production 3)Vector Boson Fusion

Optimization

- ◆ Look for evidence of associated W's and Z's MET, isolated tracks, 2 jets or...
- ♦ Simple $P_T(\gamma\gamma)$ cut clear winner: $P_T(\gamma\gamma) > 75$ GeV
- ♦ Reject 99.7% of background, only 30% of signal (total eff ~5%)
- ♦ Confirm with variations of background predictions
- ♦ P_T spectrum stable LO to NLO

Data Fits

Dataset

- ♦ 3.0 fb⁻¹
- ◆ Diphoton plus single photon triggers
- ♦ Two isolated, well-identified photons, Et>15GeV Central -Central(|η|<1.1) or Central-Forward (2.2<|η|<2.8)
- \bullet P_T($\gamma\gamma$) > 75 GeV

<u>Fit</u>

- ♦ Binned likelihood
- ♦ MC signal line shape
- ♦ Exponential eq. for background lineshape
- background shape $\rightarrow 20\% \sigma$

Entries/2 GeV/c²

Fermiophobic Higgs

Final mass limit $m(h_f) > 106 GeV$

submitted - arXiv:0905.0413

Searched $\gamma\gamma+X$ GMSB limit $\chi_1>149$ GeV

Searched ybE_T

Fermiophobic Higgs > 106 GeV

Thank you..

Limit Projections

Project $\gamma \gamma + ME_T$ and $\gamma j + ME_T + EM \text{ time }$ analyses

